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ABSTRACT 

The aim of this work is to estimate the non-linear stochastic dynamic response for a reasonable calculation 

cost. For that, we propose an original approach based on the coupling of the Polynomial Chaos Expansion 

PCE with Component Mode Synthesis CMS condensation method. CMS method proved to be effective in 

reducing the size of the problem, while the PCE method allows taking problems with uncertain parameters. 

This approach allows a minimal computational cost. Otherwise, we present some numerical simulations 

demonstrate the effectiveness and applicability of the proposed approach. 

 

Keywords: Component Mode Synthesis, non-linear stochastic dynamic response, Polynomial Chaos 

Expansion, uncertain parameters.  

 

INTRODUCTION  

Nonlinear phenomena in the dynamics of structures are relatively well known and many methods 

have been developed to take these into account when dimensioning a structure. Nevertheless, most of 

these methods are deterministic and do not allow us to consider the uncertainties present in such 

structures. Indeed, due to the manufacturing process, there is dispersion on the values of physics 

parameters, so the latter can be considered as random. Also for a robust design objective, it is 

necessary to integrate these variations to estimate the associated nonlinear random response. 

One of the classic methods for taking into account uncertainties is the Monte Carlo Simulations 

(MCS) [1]. This method, based on the resolution of simulations for different values of the random 

parameters, requires many realisations and it is expensive in computation time. As a result, other 

methods have been developed. Perturbation methods based on a development in Taylor series of 

second order [2]  and Neumann expansion method [3] are generally efficient. Another development in 

the first order [4] gives similar results to the previous developments with a reduced time computing. 
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Furthermore, another form of development is a Polynomial Chaos Expansion (PCE) [5,6]. The 

stochastic solution may be expanded in terms of the polynomial chaos basis whose elements are 

obtained from orthogonal polynomial [7]. The properties of this polynomial basis are used to generate 

a system of deterministic equations. The resolution of this system is used to determine the variability 

of the response. 

However, nonlinear dynamics, the large number of degrees of freedom due to the mesh of a large 

structure and higher order developing for modeling uncertainty induced a considerable increase of 

deterministic equations. 

One way to solve this problem is the reduction by Component Mode Synthesis (CMS) method 

proposed in the literature [8-15]. This method allows condensing the large number of degrees of 

freedom in a small number using the generalized coordinates. Adrian Fritz et al [16] proposed a 

comparative study of different bases for reduction in nonlinear dynamics structures. Thus, in the CMS 

method, the overall structure is divided into sub-structures, each of which is analyzed independently in 

order to obtain the corresponding solution. These solutions are combined to obtain the overall solution 

of the structure by imposing constraints on the interfaces. The different methods are classified 

according to CMS interface: fixed interface [8] free interface [9-10], or hybrid interface [11,12]. 

Recently Sarsri et al [17-18] developed an approach coupling CMS reduction method and 

developing uncertainty by a polynomial chaos expansion to calculate the frequency transfer functions 

and response temporal for linear stochastic structures. Sinou J. et al [19] proposed for simple 

structures, requiring no reduction, a technique taking into account uncertainties in nonlinear models, 

by combining the method of Harmonic Balance Method (HBM) and developing uncertainty by a 

polynomial chaos expansion. This method is based on a formulation of nonlinear dynamic problem in 

which the physical parameters, nonlinear forces and the excitation force are considered random. 

 The aim of this work is to estimate the stochastic nonlinear dynamic response for a large structure 

with a minimal computational cost. To do this, we develop a methodological approach for calculating 

the temporal response of large structures with uncertain parameters. This approach is based on 

coupling of the Polynomial Chaos expansion with the reduced method (CMS). First, we develop the 

nonlinear dynamic equations considering geometrical nonlinearities. The resolution of the nonlinear 

dynamics problem by the Finite Element FE method is adopted. Then, the temporal integration by 

Newmark is developed. Secondly, we take the random phenomena using the PCE method. The 

method of stochastic finite element is used. Various types of CMS interface method is used to 

optimally reduce the model size. The first moments of the nonlinear dynamic response of the reduced 

system are compared with the entire system. Several numerical simulations have shown the accuracy 

and efficiency of procedures and methodologies developed 

REDUCTION BY COMPONENT MODE SYNTHESIS METHOD  

The CMS method consists in using simultaneously a sub-structuring technique and a reduction 

method. The large and complex structure is partitioned in sub structures. Each sub-structure is 

represented by a reduced basis composed of the normal modes and the interface modes. We present 

the theoretical bases of the CMS method. Initially the eigenmodes and the interface static 

deformations are given for each sub-structure. Then the overall system is projected on these bases 
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taking into account the interface couplings between the sub-structures, after the reduced system is 

solved. Finally the complete system solution is reconstituted. 

The finite element model of the entire structure is partitioned into N substructures SS(i) (i=1,…, N). 

The equations of motion for each non- linear substructures SS(i)  are: 

 

 𝑀 𝑖 𝑢  𝑖 +  𝐶 𝑖 𝑢  𝑖 +  𝐾 𝑖 𝑢 𝑖 +  𝐹𝑛𝑙  
𝑖 =  𝐹𝑒 

𝑖           (1) 

 

With 𝑀 𝑖 ,  𝐶 𝑖  and  𝐾 𝑖   are respectively the mass matrix, the damping matrix and the stiffness 

matrix for substructures SS(i). 

 

The displacement vector  u i is partitioned into a vector   uj 
i
 , called interface DOF and  uin  i is 

the vector of internal DOF: 

       u i=  
uj

uin
 

i

                                       (2) 

The external force vector  Fe 
i is composed into vectors  Fej 

i
 and  Fee  i , called interface force 

and external applied force.  

 𝐹𝑒 
𝑖 =  𝐹𝑒𝑗  

𝑖
+  𝐹𝑒𝑒  𝑖                             (3) 

The non linear force vector  Fnl  
iis composed into vectors  Fnlj  

i
 and  Fnle  i, called interface force 

and external non linear force.  

 𝐹𝑛𝑙  
𝑖 =  𝐹𝑛𝑙𝑗  

𝑖
+  𝐹𝑛𝑙𝑒  𝑖                          (4) 

In the component mode synthesis methods, the physical displacements of the substructure SS(i) are 

expressed as a linear combination of the substructure modes. After some algebraic transformations, a 

set of Ritz vectors Q is obtained and the displacement vector of each sub-structure can be expressed 

as:  

 𝑢  𝑖 =  𝑄  𝑖  
𝑢𝑗

 𝑖 

𝜂𝑝
 𝑖 

 =  𝑄  𝑖  𝑢𝑐 
 𝑖         (5) 

With  η
p

 i  are the generalized coordinates. The matrix   Q  i  is defined according to the method of 

sub structuring used (fixed or free interface [10]). 

The conservation of interface DOF allows assembling these matrices as in the ordinary finite 

element methods. Let us denote by  uc  the vector of independent displacements of the assembled 

structure: 

 𝑢𝑐 =

 
 

 
𝜂𝑝

 1 

⋮
𝜂𝑝

 𝑁 

𝑢𝑗  
 

 

                                         (6) 

The compatibility of interface displacements of the assembled structure is obtained by writing for 
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each substructure SS(i) the following relation: 

 𝑢𝑐 
𝑖 =  𝛽 𝑖 𝑢𝑐                                       (7) 

Where  β i is the matrix of localization or of geometrical connectivity of the SS(i) substructure. It 

makes possible to locate the DOF of each substructure SS(i)  in the global DOF of the assembled 

structure. They are the Boolean matrices whose elements are 0 or 1.  

A transformation matrix can be defined for each substructure SS(i)  by: 

 𝑍 𝑖 =  𝑄 𝑖 𝛽 𝑖                                       (8) 

Where  Q i is given by the considered CMS method. 

The displacement vector   u  i   are then given by 

 𝑢  𝑖 =  𝑍 𝑖 𝑢𝑐                                   (9) 

 

Inserting Eq. (9) into Eq. (1) and multiply on the right by  Z it , using the sum for all substructures, 

the following equation is obtained: 

 𝑀𝑐  𝑢 𝑐 +  𝐶𝑐  𝑢 𝑐 +  𝐾𝑐  𝑢𝑐 +   𝑍 𝑖𝑡𝑁
𝑖=1   𝐹𝑛𝑙𝑗  

𝑖
+  𝐹𝑛𝑙𝑒  𝑖 =   𝑍 𝑖𝑡 ( 𝐹𝑒𝑗  

𝑖𝑁
𝑖=1 +  𝐹𝑒𝑒  𝑖)   

(10)  

                                                  

 Where:                                                      𝑀𝑐 =   𝑍 𝑖𝑡  𝑀 𝑖 𝑍 𝑖𝑁
𝑖=1  

                                                        𝐶𝑐 =   𝑍 𝑖𝑡  𝐶 𝑖 𝑍 𝑖𝑁
𝑖=1                                                      (11) 

  𝐾𝑐 =   𝑍 𝑖𝑡  𝐾 𝑖 𝑍 𝑖         𝑁
𝑖=1  

Using the interface DOF compatibility of displacements, it can easily be shown that: 

                                                             𝑍 𝑖𝑡  𝐹𝑒𝑗  
𝑖

= 0𝑁
𝑖=1                                                            (12) 

Finally, the reduced equation of motion can be written as follows:  

 

 𝑴𝒄  𝒖 𝒄 +  𝑪𝒄  𝒖 𝒄 +  𝑲𝒄  𝒖𝒄 +   𝒁 𝒊𝒕𝑵
𝒊=𝟏   𝑭𝒏𝒍𝒋 

𝒊
+  𝑭𝒏𝒍𝒆 

𝒊 =   𝒁 𝒊𝒕  𝑭𝒆𝒆 
𝒊𝑵

𝒊=𝟏               

(13)                                    

POLYNOMIAL CHAOS EXPANSION METHOD 

 

In this section, the Polynomial Chaos Expansion and the CMS approaches, presented in the 

previous sections, will be coupled in order to analyze the dynamic behaviours of structures with 

uncertain parameters. Based on the CMS, the reduced random differential system to be solved is 

equation (13) 

In the following, the physical properties of each substructure SS
(i)

 described by the mass, damping 

and stiffness matrices are assumed to be uncertain. 𝑀 𝑖 ,  𝐶 𝑖  and  𝐾 𝑖   are random matrices. The 

transformation matrix  𝑍 𝑖  can be defined assuming that the model is deterministic. The present 

analysis will assume that all random variables obey a normal distribution. 
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Using a particular formulation of the stochastic finite element method the matrices  𝑀 ,  𝐶  

and 𝐾 can be represented in the form: 

 

 𝐾 𝑖 =   𝐾𝑘 𝑖𝐾
𝑘=0 . 𝜉𝑘           𝐶 𝑖 =   𝐶𝑐 

𝑖𝐶
𝑐=0 . 𝜉𝑐                    𝑀 𝑖 =

  𝑀𝑘 𝑖𝑀
𝑚=0 . 𝜉𝑚                          (14) 

 

The external vector force is:  𝐹𝑒 
𝑖 =   𝐹𝑒𝑓

 
𝑖

𝐹
𝑓=0 . 𝜉𝑓  

𝜉𝑘 , 𝜉𝑐 , 𝜉𝑚  𝑎𝑛𝑑 𝜉𝑓  are the random variables 

The condensed mass, damping, stiffness matrices and vector forces become then: 

 

 𝑀𝑐 =   𝑀𝑐𝑚  𝑀
𝑚=0 . 𝜉𝑚       𝐶𝑐 =   𝐶𝑐𝑐  

𝐶
𝑐=0 . 𝜉𝑐       𝐾𝑐 =   𝐾𝑐𝑘  𝐾

𝑘=0 . 𝜉𝑘     𝐹𝑒𝑐  =   𝐹𝑒𝑐𝑓  𝐹
𝑓=0 𝜉𝑓    

(15) 

With :                                                                                         

 𝑀𝑐𝑚  =   𝑍 𝑖𝑡  𝑀𝑚  𝑖 𝑍 𝑖𝑁
𝑖=1             𝐶𝑐𝑐  =   𝑍 𝑖𝑡  𝐶𝑐 

𝑖 𝑍 𝑖𝑁
𝑖=1                

 𝐾𝑐𝑘  =   𝑍 𝑖𝑡  𝐾𝑘 𝑖 𝑍 𝑖𝑁
𝑖=1    

 𝐹𝑒𝑐𝑓  =   𝑍 𝑖𝑡  𝐹𝑒𝑓  
𝑖

𝑁

𝑖=1

 

The temporal response of non linear dynamic systems with the random properties is also a random 

process the vectors  𝑢𝑐 𝑡 , 𝑢 𝑐 𝑡 𝑎𝑛𝑑 𝑢 𝑐(𝑡) are expanded along polynomial chaos basis: 

 𝑢𝑐 𝑡  =   𝑢𝑛 𝑡  . 𝜓𝑛( 𝜉𝑖 𝑖=1
𝑄 )

𝑁

𝑛=0

 

                                                                𝑢 𝑐 𝑡  

=   𝑢 𝑛 𝑡  . 𝜓𝑛( 𝜉𝑖 𝑖=1
𝑄 )

𝑁

𝑛=0

                                                        (16) 

 𝑢 𝑐 𝑡  =   𝑢 𝑛 𝑡  . 𝜓𝑛( 𝜉𝑖 𝑖=1
𝑄 )

𝑁

𝑛=0

 

Where: 

 𝜓(𝜉𝑖)  are multidimensional Hermit orthogonal polynomials in the random variables 𝜉𝑖   

defined by: 

𝜓𝑛 𝜉𝑖 , …… … . 𝜉𝑃 =  −1 𝑝 . exp(
1

2
 𝜉 𝑇  𝜉 )

𝜕𝑝(−
1
2

 𝜉 𝑇  𝜉 )

𝜕𝜉𝑖 , … … . , 𝜕𝜉𝑝
 

 𝑢𝑛 𝑡 , 𝑢 𝑛 𝑡  𝑎𝑛𝑑  𝑢 𝑛 𝑡  denote a vector determinist coefficients. 

 

The temporal response from time 0 to time T of equation (13) is required. The time T is subdivided 

into n intervals∆t =
T

n
 and the numerically solution is obtained at times tr = r. ∆t r ∈ IN and 0 ≤ r ≤

n Assuming that the solutions at times t are known and that the solution at time  t + ∆t  is required 

next. According to the Newmark method, the following assumption is used at time  t + ∆t : 
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 𝑢 𝑐 𝑡 + ∆𝑡  = 𝑎0( 𝑢𝑐 𝑡 + ∆𝑡  −  𝑢𝑐 𝑡  ) − 𝑎1 𝑢 𝑐 𝑡  − 𝑎3 𝑢 𝑐 𝑡   

                                      𝑢 𝑐 𝑡 + ∆𝑡  =  𝑢 𝑐 𝑡  + 𝑎6 𝑢 𝑐 𝑡  + 𝑎7 𝑢 𝑐 𝑡 + ∆𝑡                               

(17) 

 

In which,the following notations are used: 

𝑎0 =
𝛿

𝛼 ∆𝑡 2
                                          𝑎1 =

𝛿

𝛼 ∆𝑡 
 

𝑎2 =
1

𝛼 ∆𝑡 
                                            𝑎3 =

1

2𝛼
− 1 

            𝑎4 =
𝛿

𝛼
− 1                                              𝑎5 =

 ∆𝑡 

2
 
𝛿

𝛼
− 1  

𝑎6 =  ∆𝑡  1 − 𝛿                                    𝑎7 =  ∆𝑡 𝛿 

 

The two parameters  𝛼  and 𝛿 , verify 𝛿 ≥
1

2
 and 𝛼 ≥

 𝛿+0.5 

4
 in order to get accurate and stable 

solution 

In order to obtain the displacement, velocity and acceleration solutions at time  t + ∆t , the 

following equation of motion is considered:  

 

 𝑀𝑐  𝑢 𝑐 t + ∆t  +  𝐶𝑐  𝑢 𝑐 t + ∆t  +  𝐾𝑐  𝑢𝑐 t + ∆t  

+   𝑍 𝑖𝑡

𝑁

𝑖=1

  𝐹𝑛𝑙𝑗  t + ∆t  
𝑖

+  𝐹𝑛𝑙𝑒  t + ∆t ,  𝑖 

=   𝑍 𝑖𝑡  𝐹𝑒𝑒  t

𝑁

𝑖=1

+ ∆t  𝑖                                                                                                          (18) 

Substituting Eqs. (17) into Eq. (18), the following quasi-static equation at time  𝑡 + ∆𝑡 ,   is 

obtained:  

 

                                          𝐾𝑒𝑞𝑐   𝑢𝑐 𝑡 + ∆𝑡  = Feqc                                                                 (19) 

 

with:                  

  𝐾𝑒𝑞𝑐  =  𝐾𝑐 +  𝐾𝑛𝑙𝑐  + 𝑎0 𝑀𝑐 + 𝑎1 𝐶𝑐  

 

 𝐾𝑛𝑙𝑐  =   𝑍 (𝑖) 𝐾𝑛𝑙  
(𝑖) 𝑍 (𝑖)𝑡

𝑁

𝑖=1

 

 

 𝐾𝑛𝑙  
(𝑖) =  𝜕

 𝐹𝑛𝑙  
𝑖

𝜕𝑢
 
 𝑢 = 𝑢 (𝑖)
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 𝐹𝑒𝑞𝑐  =  𝐹𝑒𝑐 (𝑡 + ∆𝑡) +  𝑀𝑐  𝑎0 𝑢𝑐 t  + 𝑎2 𝑢 𝑐 t  + 𝑎3 𝑢 𝑐 t   

+  𝐶𝑐  𝑎1 𝑢𝑐 t  + 𝑎4 𝑢 𝑐 t  + 𝑎5 𝑢 𝑐 t    

 

Solving Eq. (19) for  𝑢𝑐 𝑡 + ∆𝑡   the corresponding velocity and acceleration solutions 𝑢 𝑐 t +

∆t and𝑢𝑐𝑡+∆𝑡   can be directly computed using Eqs. (17). Based on Eqs. (15) the random equivalent 

matrix  𝐾𝑒𝑞𝑐   and vector  𝐹𝑒𝑞𝑐  are explicitly given by:  

 𝐾𝑒𝑞𝑐  =   𝐾𝑐𝑘  

𝐾

𝑘=0

. 𝜉𝑘 + + 𝐾𝑛𝑙𝑐  + 𝑎0    𝑀𝑐𝑚  

𝑀

𝑚=0

. 𝜉𝑚 

+ 𝑎1    𝐶𝑐𝑐  

𝐶

𝑐=0

. 𝜉𝑐                                     (20) 

 𝐹𝑒𝑞𝑐  =   𝐹𝑒𝑐𝑓 (𝑡 + Δ𝑡) 

𝐹

𝑓=0

𝜉𝑓 +   𝑀𝑐𝑚  

𝑀

𝑚=0

.   𝑎0 𝑢𝑛 t  + 𝑎2 𝑢 𝑛 t  + 𝑎3 𝑢 𝑛 t   

𝑁

𝑛=0

𝜉𝑚𝛹𝑛  

+   𝐶𝑐𝑐  

𝐶

𝑐=0

.   𝑎1 𝑢𝑛 t  + 𝑎4 𝑢 𝑛 t  + 𝑎5 𝑢 𝑛 t   

𝑁

𝑛=0

𝜉𝑐𝛹𝑛                                                                   (21) 

Substituting Eqs. (20) and (21) into Eq. (19) and forcing the residual to be orthogonal to the 

approximating space spanned by the Hermite polynomial chaos 𝛹𝑚  , we obtained  the following 

equation: 

  𝑢𝑛(𝑡 + Δ𝑡)

𝑁

𝑛=0

 𝐾𝑐𝑘  

𝐾

𝑘=0

. ℎ𝑘𝑛𝑚 +  𝐾𝑛𝑙𝑐   𝑢𝑛(𝑡 + Δ𝑡)

𝑁

𝑛=0

 𝜓𝑛𝜓𝑚  

+ 𝑎0    𝑢𝑛(𝑡 + Δ𝑡)

𝑁

𝑛=0

 𝑀𝑐𝑚  

𝑀

𝑚=0

. ℎ𝑚𝑛𝑚  + 𝑎1    𝑢𝑛(𝑡 + Δ𝑡)

𝑁

𝑛=0

 𝐶𝑐𝑐  

𝐶

𝑐=0

. ℎ𝑐𝑛𝑚  

=  Feqc   𝜓𝑚                                                           (22) 

 

 Feqc   𝜓𝑚  =   𝐹𝑒𝑐𝑓 (𝑡 + Δ𝑡) 

𝐹

𝑓=0

 𝜉𝑓𝛹𝑚  

+   𝑀𝑐𝑚  

𝑀

𝑚=0

.   𝑎0 𝑢𝑛 t  + 𝑎2 𝑢 𝑛 t  + 𝑎3 𝑢 𝑛 t   ℎ𝑚𝑛𝑚

𝑁

𝑛=0

 

+   𝐶𝑐𝑐  

𝐶

𝑐=0

.   𝑎1 𝑢𝑛 t  + 𝑎4 𝑢 𝑛 t  + 𝑎5 𝑢 𝑛 t   

𝑁

𝑛=0

ℎ𝑐𝑛𝑚  

 

ℎ𝑖𝑛𝑚 =  𝜉𝑖𝜓𝑛𝜓𝑚  is the inner product defined by the  mathematical expectation operator. 

 

Using matrix notations the resulting algebraic system can be rewritten as: 

𝐻1 𝑈𝑐(𝑡 + Δ𝑡) = 𝐻 𝑭𝒆𝒄(𝑡 + Δ𝑡) + 𝐻2 𝑈𝑐(𝑡) + 𝐻3 𝑈 
𝑐(𝑡) +    𝐻4 𝑈 

𝑐(𝑡)                               (23)                                                                   
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where  𝑈𝑐(𝑡) ,  𝑈 
𝑐(𝑡) ,  𝑈 

𝑐(𝑡)  and  𝑭𝒆𝒄(𝑡) are extended solution vectors containing 𝑢𝑡𝑢 𝑡 , 𝑢 𝑡  and 

𝑓𝑒  𝑡as follows: 

with   𝑈  =

 
 
 

 
 

𝑢 0
𝑢 1
⋮
𝑢 𝑡
⋮

𝑢 𝑁 
 
 

 
 

     𝑈  =

 
 
 

 
 

𝑢 0
𝑢 1
⋮
𝑢 𝑡
⋮

𝑢 𝑁 
 
 

 
 

    𝑈 =

 
 
 

 
 

𝑢0

𝑢1

⋮
𝑢𝑡

⋮
𝑢𝑁 

 
 

 
 

     and   𝐹𝑒𝑐  =

 
 
 

 
 

𝑓𝑒  0

𝑓𝑒  1

⋮
𝑓𝑒  𝑡

⋮
𝑓𝑒   𝑁 

 
 

 
 

 

 𝐻1 𝑖𝑗 =   𝐾𝑐𝑘  

𝐾

𝑘=0

. ℎ𝑘𝑖𝑗 +  𝐾𝑛𝑙𝑐   𝜉𝑖𝜓𝑗  + 𝑎0    𝑀𝑐𝑚  

𝑀

𝑚=0

. ℎ𝑚𝑖𝑗  + 𝑎1    𝐶𝑐𝑐  

𝐶

𝑐=0

. ℎ𝑐𝑖𝑗   

 

 𝐻2 𝑖𝑗 = 𝑎0    𝑀𝑐𝑚  

𝑀

𝑚=0

. ℎ𝑚𝑖𝑗  + 𝑎1    𝐶𝑐𝑐  

𝐶

𝑐=0

. ℎ𝑐𝑖𝑗   

 

 𝐻3 𝑖𝑗 = 𝑎2    𝑀𝑐𝑚  

𝑀

𝑚=0

. ℎ𝑚𝑖𝑗  + 𝑎4    𝐶𝑐𝑐  

𝐶

𝑐=0

. ℎ𝑐𝑖𝑗   

 𝐻4 𝑖𝑗 = 𝑎3    𝑀𝑐𝑚  

𝑀

𝑚=0

. ℎ𝑚𝑖𝑗  + 𝑎6    𝐶𝑐𝑐  

𝐶

𝑐=0

. ℎ𝑐𝑖𝑗   

 

 𝐻 𝑖𝑗 =  𝜉𝑖𝜓𝑗   

Note that due to the orthogonality of Hermite polynomials, most of expressions  𝜉𝑖𝜓𝑛𝜓𝑚  are zero 

values. The deterministic coefficients of  𝑈𝑐(𝑡 + Δ𝑡)  are then obtained by solving the algebraic 

system Eq. (23).  

As the transformation matrix  𝑍 𝑖was assumed to be deterministic, the physical displacement of 

each substructure is obtained by: 

 

 𝑈(𝑡 + ∆𝑡) 𝑖 =  𝑍 𝑖 𝑈𝑐(𝑡 + ∆𝑡)                                           (24) 

The mean and variance values of 𝑢(𝑡 + ∆𝑡) 𝑖are given directly by:  

 

𝑚𝑒𝑎𝑛  𝑢(𝑡 + ∆𝑡) 𝑖 =  𝑍 𝑖 𝑢0(𝑡 + ∆𝑡)                               (25) 

𝑣𝑎𝑟  𝑢 𝑡 + ∆𝑡  𝑖 =  𝑍 𝑖   𝑢𝑛(𝑡 + ∆𝑡) 2 𝜓𝑛 2𝑁
𝑛=1              (26) 

 

These relationships give a methodological approach coupling the polynomial chaos expansion and 

any required CMS method. In this paper the free and fixed CMS methods will be tested. These 

approaches permit to take advantage of the order reductions of the CMS as well as of the polynomial 

chaos to handle uncertainties in order to solve a large non linear stochastic dynamic structure.  
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NUMERICAL EXAMPLE 

 

For non linear discrete systems with stochastic parameters, some benchmark tests are elaborated to 

demonstrate the efficiency of the methodological approach. The presented method can be applied to 

continuous or discrete systems. In this article we restrict ourselves to show the applicability and 

effectiveness of these methods for the dynamic analysis of nonlinear discrete systems with N DOF. A 

non linear dynamic system consisting of 20 masses connected by 21 springs nonlinear shown in Fig. 1. 

This structure will be divided into two substructures SS (1) with 11 internal DOF and SS (2) with 8 

internal DOF, and one DOF of junction the mass m/2. The starting equation 20DOF will be condensed 

and will bring to the resolution of a 10-DOF equation, divided into 1 junction DOF, 5 modes free or 

fixed interfaces of SS (1) and 4 modes free or fixed interfaces for SS (2). 

The following characteristics are considered: 

 Mass :𝑚1 = 𝑚2 = ⋯ = 𝑚20 = 2 𝑘𝑔 

 Linear stiffness:𝑘1 = 𝑘3 = ⋯ = 𝑘39 = 𝑘41 = 50𝑁/𝑚 

 Non linear cubic stiffness: 𝑘2 = 𝑘4 = ⋯ = 𝑘40 = 𝑘42 = 10𝑁/𝑚3 

 

The initial conditions are: 

  𝑢𝑐 =  0,0,0,0,0,0.5,0,0,0,0  

  𝑢 𝑐 =  0,0,0,0,0,0,0,0,0,0  

 

To illustrate the steps of the previously presented method, one begins by writing the vibration of 

the overall system of equations and those subsystems. 

   In this study, it has been chosen to investigate the effects of uncertainties by considering mass 

uncertain parameters. The mass parameter is supposed to be a random variable and defined as 

follows: 𝑚 = 𝑚0(1 + 𝜎𝑚𝜉𝑚 )  Where 𝜗𝑚  is a zero mean value Gaussian random variable 𝑚0 =

𝑚𝑖 𝑖=1…20  is the mean value and 𝜉𝑚 = 3% is the standard deviation of this parameter. Firstly, the 

mean and variance of the magnitude of displacement have been computed by the PCE method with 

whole structure (without reduction). The obtained results are compared with those given by the direct 

Monte Carlo simulation 900 simulations. 

Secondly, we used the approach based on the coupling of the PCE method with Component Mode 

Synthesis CMS condensation method. This approach allows reducing the size of the problem and the 

computational cost table 1. The mean and variance of the magnitude of displacement have been shown 

in Figures 2, 3, 4and 5. We can see that the different methods provide very similar results. 
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Figure1.  Decomposed structure 

 
Figure.2. The mean of temporal displacement for m2, Monte Carlo Simulation with 900 samples, PCE with complete 

structure and with (CMS) methods free interface and fixed interface, ξ
m

= 3%. 

 
Figure.3. The variance of temporal displacement for m2, Monte Carlo Simulation with 900 samples, PCE with complete 

structure and with (CMS) methods free interface and fixed interface, 𝜉𝑚 = 3% 
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TABLE 1:CPU time (s) comparison for stochastic time response for m2 

 

 MCS with 

whole structure 

PCE ordre2 with 

whole structure 

PCE ordre2 with free 

interface CMS method 

PCE ordre2 with fixed 

interface CMS method 

CPU Time (s) 112.001801 1.593684 1.351902 1.314507 

 

 
 

Fig.4. The mean of temporal displacement for m19, Monte Carlo Simulation with 900 samples, PCE 

with complete structure and with (CMS) methods free interface and fixed interface, 𝜉𝑚 = 3% 

 

 
Fig.5. The variance of temporal displacement for m17, Monte Carlo Simulation with 900 samples, 

PCE with complete structure and with (CMS) methods free interface and fixed interface𝜉𝑚 = 3%. 

CONCLUSION 

The main of this work is to provide the variability of the transient solution of a large and complex 

structure by considering geometric nonlinearities. We have achieved this by implementing an 
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integrated approach, the coupling PCE method, CMS reduction method and temporal integration. The 

PCE method was used to model the uncertainty parameters, the stochastic solution may be expanded 

in terms of the polynomial chaos basis whose elements are obtained from Hermit orthogonal 

polynomial. We developed the CMS method in the nonlinear case for reducing the finite element 

model. The implementation of the temporal integration by Newmark schema has allowed us to 

establish the variability of the solution for nonlinear reduced model with uncertain parameters. We 

could solve the problem of calculating the tangent matrix. The numerical tests show the accuracy of 

the results and minimization of cost calculation, thus validating this approach. 
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